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Abstract: We introduce a class of self-steering partially coherent vector optical beams with
the aid of a generalized complex Gaussian representation. We show that such partially coherent
vector beams have mobile guiding centers of their intensity and polarization state distributions
on the beam free space propagation that could be employed to generate far-field polarization
arrays. Further, we introduce theoretically and realize experimentally a class of vector beams
with inhomogeneous statistical and nontrivial far-field angular distributions, which we term
cylindrically correlated partially coherent (CCPC) vector beams. We find that such novel
beams possess, in general, cylindrically polarized, far-field patterns of an adjustable degree of
polarization. The steering control of the intensity and polarization of the self-steering CCPC
vector beam is also demonstrated in experiment. Our findings can find important applications,
such as trapping of neutral microparticles and excitation of novel surface waves.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence, as one of the fundamental properties of light, plays an important role in
the light field manipulation and the light-matter interactions [1]. Recent studies have shown
that the light coherence structure can be viewed as an indispensable degree of freedom to
control the physical properties of propagating beams [2–9] and surface waves, from evanescent
waves [10] to surface plasmon polaritons [11–15]. Several types of partially coherent fields with
statistically nonuniform correlation functions have been introduced and generated via various
coherence manipulation methods [16–21]. These fields exhibit many interesting properties
during propagation such as self-splitting, self-focusing, and self-shaping in either space or time
domains [2,4–9,22–25], and are envisioned useful in a wealth of applications to free-space optical
communications [26, 27], super-resolution imaging [28, 29], and longitudinal field shaping [30].
Phase structuring of the complex coherence function has also been introduced recently [31–35],
and has shown the ability to modulate the propagation dynamics and far-field intensities of
the optical beams [36]. In particular, self-steering partially coherent beams have been lately
introduced by appropriate phase engineering of the cross-spectral density of a partially coherent
source [32]. Such beams possess a moving guiding center and they maintain their cross-spectral
density shape on free space propagation. The self-steering partially coherent beams can find
applications to trapped particle transport and mobile target tracing.

Polarization is another fundamental feature of light fields, reflecting their vector nature. Until
recently, coherence and polarization of light fields had been treated separately for historical
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reasons [37]. In 1994, James predicted theoretically that the degree of polarization of a partially
coherent beam can change on propagation in even free space [38]. This was subsequently verified
experimentally by Vidal et al. in 2011 [39]. Since Gori in 1998 [40] and Wolf in 2003 [41]
developed unified theories of coherence and polarization for the random electromagnetic beams
in time and frequency domains, respectively, numerous studies have been devoted to partially
coherent vector beams aiming to elucidate their fundamental properties and outline potential
applications [42–44]. After Gori et al. [45] introduced a su�cient condition for devising bona
fide cross-spectral density matrices of optical sources, increasing attention has been paid to the
spatial coherence structure engineering of partially coherent vector beams. In 2014, Chen et
al. introduced a class of nonuniformly correlated partially coherent vector beams [46]. A fully
polarized intensity fraction of such beams is radially polarized in the far zone of the source. As
the source spatial coherence decreases, a very pure radially polarized, partially coherent far field
can be generated by the source, a feature combination especially conducive to reliable particle
trapping [47] and material thermal processing applications [48].

In this paper, we extend the concept of self-steering partially coherent scalar beams to the
electromagnetic (vector) domain by using a generalized complex Gaussian representation for
the cross-spectral density matrices. Such self-steering vector beams possess a dynamic guiding
center of their intensity and Stokes parameter profiles as the beams propagate in free space. To
illustrate our general formalism, we introduce both theoretically and experimentally a class of
partially coherent vector beams with nonuniform correlations and nontrivial far-field features
that we term cylindrically correlated partially coherent (CCPC) vector beams. We find that such
CCPC vector beams can create cylindrically polarized far fields of any degree of polarization.
We further put forward the experiment to generate the self-steering CCPC vector beam and
demonstrate its dynamic propagation properties.

2. Generalized complex Gaussian representation of partially coherent vector
beams

The complex Gaussian representation (CGR) of scalar partially coherent fields was introduced
by Ponomarenko [49] by analogy with the Glauber-Sudarshan P-representation of quantum
optics [1]. According to the CGR, a partially coherent field can be expressed as a linear
superposition of uncorrelated and phase-shifted complex Gaussian modes, which can be routinely
produced in the laboratory using standard lasers as light sources. Therefore, the CGR opens
up alternative avenues for coherence structure engineering and novel partially coherent source
design. The optical coherence lattices and gratings with periodic spatial and temporal coherence
properties have been constructed with the help of the CGR [31,50]. Moreover, the CGR provides
a convenient approach for dealing with partially coherent fields propagation through various
systems, such as free space [36], graded-index media [51], the turbulent atmosphere [52], and
uniaxial crystals [53]. In this section, we will introduce a generalized CGR of partially coherent
vector beams, and apply it to examine partially coherent vector beam propagation through generic
optical ABCD systems.

2.1. Representation

The statistical properties of a partially coherent vector beam, propagating close to the optical axis
(i.e., along z-axis), are characterized by a 2 ⇥ 2 (space-frequency) cross-spectral density matrix
or (space-time) coherence-polarization matrix. In the space-frequency domain, the cross-spectral
density matrix at the source plane (z = 0) can be written as [44]

W(r1, r2, 0) =
266664

W
xx

(r1, r2, 0) W
xy

(r1, r2, 0)
W

yx

(r1, r2, 0) W
yy

(r1, r2, 0)

377775
, (1)
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with the elements
W

mn

(r1, r2, 0) = hE⇤
m

(r1)En

(r2)i, (2)

where (m, n) 2 (x, y), r1 ⌘ (x1, y1) and r2 ⌘ (x2, y2) are two arbitrary position vectors in the
source plane, E

x

and E
y

denote the components of a random electric field along two mutually
orthogonal x and y directions perpendicular to the z axis. The asterisk and the angular brackets
denote the complex conjugate and ensemble average, respectively. Hereafter, we omit the angular
frequency ! for simplicity.

A straightforward CGR extension to the vectorial case implies that the cross-spectral density
matrix for any partially coherent vector fields can be represented as

W(R1,R2, 0) =
π

d4↵ P(↵) ⇤
↵(R1, 0) ↵(R2, 0). (3)

Here we use the notation R ⌘ (X,Y ) to represent a dimensionless radius vector with X = x/�
I

,
Y = y/�

I

, and �
I

being any characteristic spatial scale in the beam transverse plane. In particular,
it is convenient to assume that �

I

coincides with a beam waist at the source plane. Next,

P(↵) =
266664
P
xx

(↵) P
xy

(↵)
P
yx

(↵) P
yy

(↵)

377775
, (4)

is a nonnegative matrix that guarantees nonnegative definiteness of the cross-spectral density
matrix [45], and { ↵(R, 0)} are the complex Gaussian (pseudo) modes. Further, d4↵ =
⇧

s=X,YdRe[↵
s

]dIm[↵
s

] and ↵ = (u + iv)/
p

2, where Re[·] and Im[·] denote the real and
imaginary parts, respectively. The pseudo-modes { ↵(R, 0)} at the source are given explicitly
by the expression

 ↵(R, 0) =
e�v2/2
p
⇡

exp [� (R �
p

2↵)2
2

]. (5)

Here we stress that the pseudo-modes are non-orthogonal and normalized such that
π

d2R  ⇤
↵(R, 0) ↵(R, 0) = 1, (6)

and form an over-complete set implying that
π

d4↵  ⇤
↵(R1, 0) ↵(R2, 0) = �(R1 � R2), (7)

where �(R1 � R2) is a Dirac delta function.
It follows from Eqs. (3)–(7) that the cross-spectral density of any partially coherent vector

source can be represented by Eq. (3). In addition, the generalized CGR can be applied to
synthesize novel partially coherent vector beams via engineering the nonnegative matrix P(↵).
Moreover, partially coherent vector beam propagation in linear optical media can be simply
treated since only Gaussian pseudo-modes, but not the distribution function P(↵), are a�ected
by beam propagation.

2.2. Propagation in the optical ABCD system

The cross-spectral density of a partially coherent vector beam field propagating though an ABCD
optical system can be expressed at any output plane as

W(R1,R2, Z)=
π

d4↵ P(↵) ⇤
↵(R1, Z) ↵(R2, Z), (8)
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where

 ↵(R, Z)=
�2
I

� |B|

π
d2R0 ↵(R0, 0)e

ik�2
I

2B (AR02�2R·R0+DR2) (9)

is a complex Gaussian pseudo-mode at the output plane; A, B,C, and D are four elements of
the transfer matrix of the optical system, and k = 2⇡/� denotes the wavenumber, � being the
wavelength. On substituting from Eq. (5) into Eq. (9), we can obtain an analytical expression for
each mode field in any transverse plane Z � 0 as

 ↵(R, Z) =
e�v2/2
p
⇡

iB
Z
AB

|B| exp
⇢
� 1

2Z
AB


2A↵2 � 2

p
2↵R + Z

AB

D � 1
iZ

R2
��
, (10)

where Z = B/z
R

and Z
AB

= A + iZ . Here z
R

= k�2
I

denotes the Rayleigh range. Using Eq. (9)
and a given P-distribution, P(↵) in Eq. (8), we can easily obtain the cross-spectral density matrix
at the output plane.

3. Self-steering partially coherent vector beams

Consider now a shifted P-distribution such that

P(s)(↵) = P(↵ � ↵0), (11)

where ↵0 = (u0+ iv0)/
p

2. On substituting from Eq. (11) into Eq. (3), we obtain the cross-spectral
density matrix of a self-steering partially coherent vector beam field in the source plane in the
form

W(s)(R1,R2, 0) =W(R1 � u0,R2 � u0, 0)e�i(R1�R2)·v0, (12)

which clearly shows that the shift variables u0 and v0 lead to a spatial displacement and a phase
shift of the cross-spectral density matrix at the source.

Next, on substituting from Eq. (11) into Eq. (8), we obtain the cross-spectral density matrix of
the self-steering partially coherent vector beam in the output plane of an ABCD optical system as

W(s)(R1,R2, Z) =W(R1 � D0,R2 � D0, Z)e�i(R1�R2)·P0, (13)

where the spatial displacement and the phase shift in the output plane, respectively, can be
expressed as

D0 = Au0 + Zv0, (14)

P0 =
AD � 1

Z
u0 + Dv0. (15)

For free space beam propagation A = 1, B = z,C = 0, and D = 1, and the spatial displacement
and phase shift expressions reduce to

D0 = u0 + Zv0, (16)
P0 = v0, (17)

where Z = z/z
R

represents a dimensionless propagation distance in free space. Comparing
the spatial displacement and phase shift in Eqs. (16) and (17) in the output plane with those in
Eq. (12) in the source plane, we find that the spatial displacement of the self-steering partially
coherent vector beam on propagation in free space increases with the propagation distance Z at a
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rate determined by the initial phase shift v0. Moreover, the phase shift P0 of the beam during
propagation in free space remains unchanged.

To gain insight into the evolution properties of the spectral density (intensity) and the
polarization state of the self-steering partially coherent vector beam on propagation, we adopt the
Stokes parameters [44]

S
j

(R, Z) = tr[�(R, Z)�
j

], j 2 (0, ..., 3), (18)

where �(R, Z) = W(R,R, Z) denotes a polarization matrix, �0 is the 2 ⇥ 2 unit matrix, and
�1,�2,�3 are the three Pauli matrices. In the Stokes representation, S0(R, Z) is the intensity of
the beam, while S1(R, Z), S2(R, Z), and S3(R, Z) determine the fully polarized part of the beam
state of polarization. Eqs. (13) and (18) yield the Stokes parameters of the self-steering partially
coherent vector beam on propagation

S(s)
j

(R, Z) = S
j

(R � D0, Z), j 2 (0, ..., 3), (19)

where the spatial displacement D0 is expressed by Eq. (14) for a general ABCD optical system and
by Eq. (16) for free space. Eq. (19) indicates that not only the intensity but also the polarization
state of the self-steering partially coherent vector beam possess a dynamic guiding center on
beam propagation. Further, the displacement of the guiding center in free space grows linearly
with the propagation distance at the rate v0. The property of the self-steering partially coherent
vector beams can be used for trapped particles transport and mobile targets tracing.

4. Example

As a particular example, we introduce the cylindrically correlated partially coherent (CCPC) vector
beams in this section by using the generalized CGR. We then examine the CCPC vector beam and
self-steering CCPC vector beam propagation properties both theoretically and experimentally.

4.1. Cylindrically correlated partially coherent vector beams: theory

The P-matrix for an CCPC vector beam source has the form,

P(↵) = �(u) exp(�⇠
2
c

v2

2
)
266664

a2(v) a(v)b(v)
a(v)b(v) b2(v)

377775
, (20)

where ⇠
c

= �
c

/�
I

stands for a relative coherence length; �
c

being the coherence length of the
CCPC vector beam at the source, and

266664
a(v)
b(v)

377775
=M(✓)

266664
v
x

v
y

377775
, (21)

with M(✓) being a clockwise rotation matrix and 0  ✓ < 2⇡. On substituting from Eqs. (20),
(21), and (5) into Eq. (3), we obtain an explicit expression for the CCPC beam cross-spectral
density matrix in source plane, as given by Eqs. (39)–(44) of the Appendix. Next, on combining
Eqs. (20), (21), and (10) in Eq. (8), we obtain an expression for the cross-spectral density matrix
of an CCPC beam transmitted through an ABCD optical system as shown by Eqs. (45)–(52) of
the Appendix. In the free space propagation case, the CCPC beam Stokes parameters can then be
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expressed as

S0(R, Z) = 2C0 exp

 
�R2

S2
0

!  
1
S2

0
� 2Z2

⇠2
c

S4
0
+

2Z2R2

⇠2
c

S6
0

!
, (22)

S1(R, Z) =
4C0Z2

⇠2
c

S6
0

exp

 
�R2

S2
0

!
(X2 cos 2✓ � Y2 cos 2✓ + 2XY sin 2✓), (23)

S2(R, Z) =
4C0Z2

⇠2
c

S6
0

exp

 
�R2

S2
0

!
(�X2 sin 2✓ + Y2 sin 2✓ + 2XY cos 2✓), (24)

S3(R, Z) = 0. (25)

It is found from Eq. (22) that the CCPC beam intensity is independent of ✓. The intensity of a
partially coherent and partially polarized vector beam can be viewed as a sum of the polarized
part and unpolarized part intensities [44], e.g.,

S0(R, Z) = S0p (R, Z) + S0u (R, Z), (26)

where S0p (R, Z) and S0u (R, Z) are intensities of the polarized part and unpolarized part,
respectively. The degree of polarization in the spatial-frequency domain is defined by the
intensity ratio between the polarized part and the total field [44], i.e.,

P(R, Z) =
S0p (R, Z)
S0(R, Z)

, (27)

where S0p (R, Z) can be obtained from S1(R, Z), S2(R, Z), S3(R, Z) as

S0p (R, Z) =
q

S2
1 (R, Z) + S2

2 (R, Z) + S2
3 (R, Z). (28)

We stress here that the Stokes parameters can be measured in experiment by using the combination
of the wave plates and polarizers [54]. Thus, the intensities for the polarized and unpolarized
parts of the beam can be deduced from the Stokes parameters measurement, although, to the best
of our knowledge, in general, one cannot physically separate the polarized and unpolarized parts
of the beam [55–58]. Eqs.(22)–(28) yield

S0p (R, Z) =
4C0Z2R2

⇠2
c

S6
0

exp

 
�R2

S2
0

!
, (29)

S0u (R, Z) =
2C0(⇠2

c

S2
0 � 2Z2)
⇠2
c

S4
0

exp

 
�R2

S2
0

!
, (30)

and
P(R, Z) = 2Z2R2

⇠2
c

S4
0 � 2Z2S2

0 + 2Z2R2
. (31)

It can be inferred from Eqs. (29) and (30) that the polarized part intensity vanishes in the
source plane (i.e., S0p (R, 0) = 0 ). This implies that any CCPC vector beam in the source plane
is completely unpolarized. This conclusion can also be obtained by taking Z = 0 into Eq. (31)
(i.e., P(R, Z = 0) = 0). Further, we find that for the polarized part, the intensity always displays
a doughnut shape with a dark notch at the center, i.e., the intensity for the polarized part at center
S0p (R = 0, Z) = 0, on CCPC vector beam propagation. Thus, the field at center (R = 0) remains
unpolarized during propagation, i.e., the degree of polarization at center P(R = 0, Z) = 0. By
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Fig. 1. Calculated intensity distribution S0(R, Z) and degree of polarization P(R, Z) of a
CCPC vector beam propagating in free space. (a) The intensity distribution in the X � Z
plane (Y = 0); (b), (c), and (d) The intensity distribution in the X � Y plane at propagation
distances Z = 0, Z = 0.5, and Z = 1, respectively; (e) The distribution of the degree of
polarization in the X � Z plane (Y = 0); (f), (g), and (h) The distribution of the degree
of polarization in the X � Y plane at propagation distances Z = 0, Z = 0.5, and Z = 1,
respectively. The e�ective coherence length of the CCPC vector beam is ⇠

c

= 0.2 and the
normalization factor is C0 = 1. The displayed intensities are normalized with respect to their
maximum values.

the same token, the unpolarized part intensity remains Gaussian throughout beam propagation as
shown in Eq. (30). Further, Eqs. (29) and (30) show that the polarized part intensity monotonically
increases with Z , while the unpolarized part intensity monotonically decreases. This implies that
the generated CCPC beam becomes progressively more polarized on propagation and its dark
hollow core grows in size.

The above predictions are illustrated in Fig. 1 in which we display the intensity distribution
and the degree of polarization of a CCPC vector beam propagating in the free space. Figure 1
reveals that the CCPC vector beam in the source plane is unpolarized and has a Gaussian profile.
Figures 1(a)–(d) shows that the intensity distribution in free space indeed transforms from an
initial Gaussian to a doughnut shape with the increase of the propagation distance. This is due to
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the increase of the polarization of the beam as shown in Figs. 1(e)–(h). Further, it is noted in
Fig. 1(e) that the degree of polarization keeps zero at the beam center (R = 0) during propagation.

Next, we examine the polarization state of the CCPC vector beam. The polarized part of the
CCPC beam polarization state is encapsulated in the three Stokes parameters: S1(R, Z), S2(R, Z),
and S3(R, Z). For a CCPC vector beam, we have S3(R, Z) = 0, implying that the fully polarized
part has linear polarization. Moreover, the ratio of S1(R, Z) to S2(R, Z) can be written as

S1(R, Z)
S2(R, Z)

=
X2 cos 2✓ � Y2 cos 2✓ + 2XY sin 2✓
�X2 sin 2✓ + Y2 sin 2✓ + 2XY cos 2✓

, (32)

indicating that the fully polarized part of the CCPC vector beam displays cylindrical polarization
[59]. The polarization state distribution is controlled by the angle ✓. For examples, for ✓ = 0,
the ratio in Eq. (32) reduces to (X2 � Y2)/(2XY ) indicating a radial polarization distribution.
While, for ✓ = ⇡/2, the ratio reduces to (�X2 +Y2)/(�2XY ) indicating an azimuthal polarization
distribution. Instead of a radial polarization or azimuthal polarization, in general, each point
of the beam has a polarization rotated by ✓ from its radial direction. Such polarization state
distribution is the generalized cylindrical polarization distribution [59]. Further, it is found in
Eq. (32) that the ratio is independent of the propagation distance Z , which indicates that the
state of polarization for the CCPC vector beam remains invariant on propagation (except for the
unpolarized beam source). In Fig. 2 we display the CCPC beam polarization distribution at the
distance Z = 1 for di�erent values of ✓. We find that the beam is radially polarized for ✓ = 0 and
becomes azimuthally polarized for ✓ = ⇡/2, while for ✓ = ±⇡/4 the CCPC vector beam shows
the generalized cylindrical polarization distribution.

The degree of polarization for the beam at a certain plane on propagating depends on the
transverse position R. To examine the global polarization (akin to the global degree of coherence),
we introduce a polarization purity, which is defined as fraction of the beam energy carried by the
polarized part, i.e.,

⌘
p

(Z) =
Ø

d2R S0p (R, Z)Ø
d2R S0(R, Z)

. (33)

This real-valued quantity is independent of the transverse position R and bounded as 0  ⌘
p

(Z) 
1, with the upper and lower limits corresponding to a fully polarized and completely unpolarized
beam, respectively, whereas the intermediate values representing partially polarized beams.

In Fig. 3, we display the polarization purity ⌘
p

(Z) of a CCPC vector beam propagating in free
space as a function of the e�ective coherence length ⇠

c

and propagation distance Z . We observe
in Fig. 3 that the polarization purity is zero in the source plane (Z = 0), which implies that the
CCPC vector beam source is completely unpolarized. The polarization purity increases, though,
with the propagation distance Z . We also see that the source e�ective coherence length strongly
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Fig. 2. Distribution of the CCPC vector beam polarization states at the distance Z = 1 with
(a) ✓ = 0; (b) ✓ = ⇡/4; (c) ✓ = �⇡/4; (d) ✓ = ⇡/2. The e�ective spatial coherence length at
the source is ⇠

c

= 0.2 and the normalization factor is C0 = 1. The blue lines in the figure
denote linear polarization states.
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Fig. 3. Polarization purity ⌘
p

(Z) for a CCPC vector beam propagating in free space as a
function of the e�ective coherence length ⇠

c

at the source and propagation distance Z .

a�ects the polarization purity: the latter increases as the former decreases on propagation. In
particular, at Z = 1 (Rayleigh range), the polarization purity is nearly zero for large magnitudes
of ⇠

c

, yet it is close to 99% for 0 < ⇠
c

 0.4. Thus, a very pure polarization state (with 99%
polarization purity) can be attained by a CCPC vector beam with low initial spatial coherence.

4.2. Cylindrically correlated partially coherent vector beams: experiment

We now report experimental realization of CCPC vector beams. The schematic of our experimental
setup is shown in Fig. 4, which is similar to those reported in [46]. In our experiment, we
first generate a spatially incoherent, cylindrically polarized vector beam by using a polarization
converter [59–61] and a rotating ground-glass disk. The following shows the experiment details.
A linearly polarized beam emitted from a monochromatic He-Ne laser of wavelength 633 nm
passes through a beam expander (BE) and neutral density filter (NDF) and reflected by a reflecting
mirror, then it goes towards a linear polarizer (LP) and a radial-polarization converter (RPC)
(ARCoptix) (the photograph is shown in the inset (a) of Fig. 4). The RPC is a liquid crystal device
that can convert a conventional linearly polarized beam into a beam that has a stable radial or
azimuthal polarization distribution. In our experiment, a radially polarized beam with vectorial
electric field E(v) = E0(v)êr is generated from the RPC, where E0(v) is the amplitude of the field
and ê

r

is the unit vector in the radial direction. To generate the generalized cylindrically polarized
beam, we apply the double half-wave plates (HWPs) system [60,61] as shown in the inset (b) of
Fig. 4. By rotating the second HWP, we let angle between the fast axes of two half-wave plates
be '. The Jones matrix of the system then can be written as [60]

J(') =
266664

cos(2') � sin(2')
sin(2') cos(2')

377775
. (34)

Thus, the electric field of the beam from double HWPs system can be obtained as

E(v) = E0(v)[cos ✓ê
r

+ sin ✓ê�], (35)

where ê� denotes the unit vector in the azimuthal direction, and ✓ = 2' represent the polarization
rotation angle of each point of the beam from its radial direction. By simply rotating the second
HWP, we can vary ✓, thus generating di�erent cylindrically polarized beam. After passing
through a thin lens L1 with focal length f1 = 150 mm, the generated cylindrically polarized beam
illuminates a rotating ground-glass disk (RGGD), producing a spatially incoherent cylindrically
polarized beam. A step-by-step guide to reduce the spatial coherence of laser light using a RGGD
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(a)
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Fig. 4. Schematic of the experimental setup for generating and measuring the cylindrically
correlated partially coherent vector beam. The laser source used in our experiment is a
monochromatic He-Ne laser of wavelength being 633 nm. BE: beam expander; NDF: neutral
density filter; LP: linear polarizer; RPC: radial-polarization converter; HH: double half-wave
plates (HWPs) system as shown in the inset (b); L1, L2, L3: thin lenses; RGGD: rotating
ground-glass disk; AF: Gaussian amplitude filter; BPA: beam profile analyzer. Inset (a):
photograph of the LP (left) and RPC (right) that can convert a linearly polarized beam into a
radially polarized beam. Inset (b): converting a radially polarized beam to a generalized
cylindrically polarized beam by a double half-wave plates system. As shown in the inset ' is
the angle between the fast axes of the two HWPs, while ✓ is the clockwise rotation angle of
the linear polarization in the generalized cylindrical polarization distribution with respect
to that in the radial polarization distribution. Here the relation between ✓ and ' is given
by ✓ = 2'. Inset (c): photograph of the RGGD that is driven by the controller of a optical
chopper system.

can be found in [62]. The photograph of RGGD used in our experiment is shown in the inset
(c) of Fig. 4. The surface roughness of ground-glass disk used in our experiment is 400 mesh
number and the rotating speed is 3000 r/min that is controlled by the controller of a optical
chopper system (MC2000B, THORLABS). We stress that the transmitted beam from the RGGD
can be regarded as an incoherent cylindrically polarized beam if the diameter of the beam spot
on the RGGD is larger than the inhomogeneity scale of RGGD [63, 64], and this condition is
satisfied in our experiment.

The polarization matrix describing the incoherent cylindrically polarized beam is �(v) =
P(↵)/�(u), where P(↵) is given by Eqs. (20) and (21). After the incoherent cylindrically
polarized vector beam has passed through a thin lens L2 and a Gaussian amplitude filter (AF),
the cross-spectral density matrix of the output beam can be expressed by [46]

W(r1, r2,!) =
π
�(v)H⇤(r1, v)H(r2, v)d2v, (36)

where
H(r, v) = �i

� f2
T(r)exp[ i⇡

� f2
(v2 � 2r · v)] (37)

is the response function of the optical system between the incoherent source and the output
field, f2 = 250 mm is the focal length of L2, and T(r) = exp(�r2/4�2

I

) denotes the transmission
function of AF with �

I

being the beam width. Taking the polarization matrix �(v) for the
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incoherent cylindrically polarized beam and H(r, v) in Eq. (37) into Eq. (36), we obtain that the
cross-spectral density matrix for the output beam has the same form as that for the CCPC vector
beam (i.e., Eqs. (39)–(44)). Thus, the output field from AF is the CCPC vector source. The
transverse coherence length of the CCPC source can be expressed as �

c

= � f2/(⇡!0), where !0
is the beam width of the spot on the RGGD. The beam width of the spot on the RGGD (and thus
the transverse coherence length) can be simply controlled by varying the distance between L1
and RGGD. The transverse coherence length and the beam width of the CCPC source in our
experiment are �

c

= 0.2 mm and �
I

= 1 mm, respectively. To e�ciently measure the beam
intensity during propagation, we focus the beam by a thin lens with the focal length f3 = 400 mm,
and measure the intensity of the focused CCPC vector beam by using a beam profile analyzer
(BPA). Figure 5 displays the experimental results for the intensity distribution of the focused
CCPC vector beam at several propagation distances. We find that the CCPC beam has a Gaussian
intensity profile at the source, but gradually becomes doughnut shaped on propagation, as we
have predicted above.

z = 300 mm z = 400 mmz = 360 mmz = 0

2.0 mm 0.8 mm 0.7 mm 0.6 mm

min.

max.

Fig. 5. Experimental intensity distribution of a CCPC vector beam transmitted through a
thin lens with the focal distance f3 = 400 mm at several propagation distances. The source
transverse coherence length and beam width are �

c

= 0.2 mm and �
I

= 1 mm, respectively.
The beam wavelength is 633 nm.

0.4 mm

θ = π/2θ = -π/4θ = π/4θ = 0

min.

max.

Fig. 6. Experimental results for the total intensities (top panel), the x-polarized (middle
panel), and y-polarized (bottom panel) component intensities of CCPC vector beams with
four di�erent polarization distributions in the focal plane. The focal distance of the lens is
400 mm. The source coherence length and beam width are 0.2 mm and 1 mm, respectively.
The beam wavelength is 633 nm. The white arrows in the figure denote the transmission
direction of the linear polarizer.
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To check the polarization state of the generated CCPC vector beam, we insert a linear polarizer
with the transmission angle of either 0� or 90� with respect to the x-axis into the beam path and
measure the intensity of the x-polarized and y-polarized components in the focal plane of the lens.
Figure 6 displays experimental results for the total intensities (top panel), x-polarized (middle
panel), and y-polarized (bottom panel) components of the beam with four di�erent polarization
distributions in the focal plane. The left panel of Fig. 6 reveals that the CCPC beam displays
radial polarization in the focal plane when the angle between the fast axes of the two HWPs is
fixed at ' = 0 (now ✓ = 0, see Fig. 2(d) for the polarization distribution). The right panel reveals
that the beam exhibits azimuthal polarization when ' = ⇡/4 (now ✓ = ⇡/2, see Fig. 2(d) for the
polarization distribution). The polarization states in the second column and third column of
Fig. 6 correspond to the polarization distributions in Figs. 2(b) and 2(c).

4.3. Self-steering cylindrically correlated partially coherent vector beams

As we have discussed in Sec. 3, by adding a spatial displacement in the P(↵)-matrix, a phase
shift will appear in the cross-spectral density matrix of the self-steering vector beam source.
Not only the intensity but also the polarization state of such vector beam possess a dynamic
guiding center on beam propagation due to the phase shift in the source plane. Further, during
propagation, the beam shape and polarization distribution will keep practically invariant. Next,
we will study the experimental generation of self-steering CCPC vector beam, and verify its
steering propagation properties. To this end, we first introduce a spatial displacement ⇢0 in the
polarization matrix of the incoherent cylindrically polarized beam through using an o�-axis
cylindrically polarized beam to illuminate the RGGD. The schematic of the experimental setup is
shown in Fig. 7. Taking the shifted polarization matrix �(v � ⇢0) into Eq. (36), we obtain that
the cross-spectral density matrix of the output field can be expressed by Eq. (12), in which the
spatial displacement u0 = 0 and the phase shift

v0 = 2⇡�
I

⇢0/(� f2). (38)

This way, the self-steering CCPC vector source is generated experimentally. It is found from
Eq. (38) that the parameter v0 of the source can be simply controlled by varying the displacement
⇢0 of the o�-axis cylindrically polarized beam.

L1

RGGD L2

AF

Off-axis cylindrically 
polarized beam

0ρ
Self-steering CCPC

vector source

Fig. 7. Schematic of the experimental setup for generating the self-steering CCPC vector
source from a focused o�-axis cylindrically polarized beam. Here ⇢0 is the o�-axis
displacement of the cylindrically polarized beam on the rotating ground-glass disk (RGGD).
L and AF in the figure denote the thin lenses and Gaussian amplitude filter, respectively.

We now study experimentally the propagation properties of the focused self-steering CCPC
beam, and measure the intensity and polarization state (through x and y polarized components
of the intensity) during propagation. The focal distance of the lens used in our experiment is
400 mm. The distance between the self-steering CCPC source and the BPA is equal to z. In
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Fig. 8, we display the experimental results for the total intensity (top panel), x-polarized (middle
panel), and y-polarized (bottom) components of intensity of a focused self-steering CCPC vector
beam with the initial phase shift v0 = (10, 10) at di�erent propagation distances. The angle
between the fast axes of the two HWPs is set to be ' = 0. Thus, the polarization of the beam
during propagation has a radial polarization distribution. We can infer from Fig. 8 that the
focused self-steering CCPC vector beam propagates with a mobile steering centre. We note
also that the corresponding polarization state behavior can be inferred from that of the intensity
components and it is in agreement with our theoretical prediction. We would stress here that
although the apparent beam focusing in the figure is caused by the lens, the lens is not essential
for beam self-steering [32].

z = 300 mm z = 400 mmz = 360 mmz = 0

min.

max.

1.2 mm

Fig. 8. Experimental results for the total intensity (top panel), the x-polarized (middle
panel), and y-polarized (bottom panel) component intensities of a self-steering CCPC vector
beam transmitted through a thin lens with focal distance f = 400 mm at several propagation
distances. The source coherence and beam width are 0.2 mm and 1 mm, respectively. The
phase shift for the source is v0 = (10, 10). The beam wavelength is 633 nm. The white
arrows in the figure denote the transmission direction of the linear polarizer.

5. Conclusions

In this work, we have introduced partially coherent vector beams with mobile guiding centers of
their intensity and polarization states, referred to as the self-steering partially coherent vector
beams. As a particular example, we proposed the concept of cylindrically correlated partially
coherent (CCPC) vector beams and studied their free space propagation properties. The CCPC
beams become progressively more polarized on propagation and they acquire doughnut shape
profiles. Further, we found that very pure far-field cylindrical polarization states (with 99%
polarization purity) can be created by the CCPC sources of low spatial coherence. We have
also experimentally generated CCPC vector beams with di�erent cylindrical polarization states.
Further, the self-steering CCPC vector beam with tailored directivity of both intensity and
polarization state has been generated and measured in our experiment. The vectorial self-steering
e�ect of optical beam can be used for polarization array generation [65], e.g., via a superposition
of uncorrelated self-steering vector beams with di�erent guiding centers. Such polarization
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arrays can be useful for particle sorting and multiple surface wave excitation.

Appendix

The cross-spectral density matrix for the CCPC vector beam in the source plane reads

W
xx

(R1,R2, 0) = C0


1 � 1
⇠2
c

a2(|R1 � R2 |)
�

exp

� (R1 � R2)2

2⇠2
c

�
exp

 
�

R2
1 + R2

2
2

!
, (39)

W
yy

(R1,R2, 0) = C0


1 � 1
⇠2
c

b2(|R1 � R2 |)
�

exp

� (R1 � R2)2

2⇠2
c

�
exp

 
�

R2
1 + R2

2
2

!
, (40)

W
xy

(R1,R2, 0) = �C0
1
⇠2
c

a(|R1 � R2 |)b(|R1 � R2 |) exp

� (R1 � R2)2

2⇠2
c

�
exp

 
�

R2
1 + R2

2
2

!
,

(41)
W

yx

(R1,R2, 0) = W⇤
xy

(R2,R1, 0), (42)

where C0 is a constant and

a(|R1 � R2 |) =|X1 � X2 | cos ✓ + |Y1 � Y2 | sin ✓, (43)
b(|R1 � R2 |) = � |X1�X2 | sin ✓ + |Y1�Y2 | cos ✓. (44)

The cross-spectral density matrix for the CCPC vector beam in the output plane of an optical
ABCD system is obtained as

W
xx

(R1,R2, Z) =
C0

S2
0

S(R1,R2, Z)
(

1 + 2B2

k2�2
c

S2
0�

2
I

"
�2
I

2S2
0
(T

xx

cos ✓ + T
yy

sin ✓)2 � 1

#)
, (45)

W
yy

(R1,R2, Z) =
C0

S2
0

S(R1,R2, Z)
(

1 +
2B2

k2�2
c

S2
0�

2
I

"
�2
I

2S2
0
(�T

xx

sin ✓ + T
yy

cos ✓)2 � 1

#)
,

(46)

W
xy

(R1,R2, Z) =
C0B2

S6
0 k2�2

c

S(R1,R2, Z)(Txx

cos ✓ + T
yy

sin ✓)(�T
xx

sin ✓ + T
yy

cos ✓), (47)

W
yx

(R1,R2, Z) =W⇤
xy

(R2,R1, Z), (48)

with

S(R1,R2, Z) = exp

"
i(S2

0 D � A)
2ZS2

0
(R2

2 � R2
1) �

1
4S2

0
(R1 + R2)2 �

⇠2
c

+ 2
4⇠2

c

S2
0
(R1 � R2)2

#
, (49)

S2
0 = A2 + Z2 +

2Z2

⇠2
c

, (50)

T
xx

=
1
�
I


(X1 + X2) +

iA
Z
(X2 � X1)

�
, (51)

T
yy

=
1
�
I


(Y1 + Y2) +

iA
Z
(Y2 � Y1)

�
. (52)
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